LEDs & OLEDs
Fundings + Projects
|
Sep 03, 2013
Tridonic Dresden and Fraunhofer COMEDD Present a Desk Luminaire with Flexible OLED from the Roll
The joint OLED project R2Flex has been successfully finished now. As a result Fraunhofer COMEDD and Tridonic Dresden (formerly LEDON OLED Lighting) present a demonstrator of a desk luminaire with flexible OLED. The joint project R2Flex dealt with the production of highly efficient organic devices on flexible substrates, manufactured in a roll-to-roll process technology. R2Flex was funded by the Federal Ministry for Education and Research (BMBF) with a total sum of about 11 million Euros over a period of 2.5 years.
Read more »
White Paper | Technology
|
Sep 04, 2013
Imec and Veeco Announce Collaboration in GaN-on-Si Devices for LED and Power Electronics Applications
Nanoelectronics research centre imec of Belgium and Veeco Instruments Inc. (Nasdaq:VECO) are collaborating on a project aimed at lowering the cost of producing gallium nitride on silicon (GaN-on-Si) -based power devices and LEDs.
Read more »
Fundings + Projects
|
Sep 11, 2013
Project cyFLEX Launched to Develop OLED-Based Luminescent Packaging
cynora GmbH and the Karlsruhe Institute for Technology (KIT) jointly announce the successful launch of Project cyFLEX. Organic light-emitting diodes (OLEDs) will serve as a basis for generating flexible and luminescent surfaces for smart packaging and advertising applications. Self-luminous packaging and ultrathin flexible advertising panels for all kinds of products may soon become reality and will revolutionize product marketing.
Read more »
White Paper | Technology
|
Oct 23, 2013
Latest LRC Program Aims to Fine Tune Light for Greenhouse Crops & Medicinal Plants
Light and plants expert Tessa Pocock, Ph.D., recently joined the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute as a senior research scientist, leading the development of a new plant physiology lighting program. Her research focuses on plant photosynthesis, and plant development and regulation by light for traditional greenhouse crops and the emerging field of medicinal plants.
Read more »
White Paper | Technology
|
Oct 28, 2013
Los Alamos National Laboratory Announces Dramatic Improvements in QD Technology
Dramatic advances in the field of quantum dot light emitting diodes (QD-LEDs) could come from recent work by the Nanotechnology and Advanced Spectroscopy team at Los Alamos National Laboratory.
Read more »
White Paper | Technology
|
Nov 04, 2013
UC Santa Barbara: Optimizing Phosphors Using Simple Guidelines Improves Efficiency of Solid-State Lighting
By determining simple guidelines, researchers at UC Santa Barbara's Solid State Lighting & Energy Center (SSLEC) have made it possible to optimize phosphors –– a key component in white LED lighting –– allowing for brighter, more efficient lights.
Read more »
Technology
|
Jan 14, 2014
Epistar Lab has Released the Infrared (850nm) Product with High Photoelectric Efficiency
EPISTAR LAB is consistently devoting in LED research and design. Lots of forward-looking technologies have been well developed and now applied to LED chip production like novel transparent conductive thin film, compound mirror structure, and new EPI structure design for reducing the absorption of light. The abovementioned innovation technologies will raise the light extraction efficiency and LED performance.
Read more »
Technology
|
Jan 14, 2014
Details of the 200lm/W TLED Lighting Technology Breakthrough Unraveled
Philips is the world’s first to present a lamp prototype that produces a record 200 lumen per watt (lm/W) of high quality warm white light. This LED technology breakthrough brings energy-efficient LED light suitable for general lighting applications to a whole new level. The 200lm/W LED is expected to hit the market in 2015 and will ultimately be used in a wide range of applications.
Read more »
Fundings + Projects
|
Jan 17, 2014
Printed Transparent Electrodes for Flexible OLEDs
The BMBF-funded project IMAGE for the development of innovative printable electrode materials for high-efficient organic light-emitting diodes and solar cells has been successfully completed.
Read more »
White Paper | Technology
|
Jan 24, 2014
Cree Sets New Efficiency Benchmark with First 200 lpw LED Luminaire Prototype
Cree, Inc. raises the performance bar again with the demonstration of the first 200 lumen-per-watt (LPW) LED concept luminaire, which is more than twice the efficiency of the best linear fluorescent luminaires. The latest Department of Energy (DoE) projections* had estimated that this level of luminaire efficiency would not occur until after 2020, but Cree’s latest innovation has made this possible six years sooner than projected. The prototype leverages Cree’s vertical integration with innovations in LED chips, optics, materials technology and novel system design to deliver unprecedented performance.
Read more »
Fundings + Projects | White Paper
|
Feb 11, 2014
CPI Manufactures Flexible OLED Lighting Demonstrators
The Centre for Process Innovation (CPI) has produced a range of flexible Organic Light Emitting Diode (OLED) demonstrators. Manufactured on CPI’s OLED/OPV Prototyping Line, the devices have been built on a range of substrates with thickness ranging from 50µm to 125µm. The device structure consists of an Indium Tin Oxide anode, evaporated hole injection layer, co-evaporated emissive layer and a conventional cathode. The device chemistry can be modified to produce a variety of colours and is encapsulated using a pressure sensitive adhesive and a commercially available barrier material.
Read more »
Technology
|
Feb 24, 2014
A Roadmap to Efficient Green-Blue-Ultraviolet LEDs
Scientists at the U.S. Naval Research Laboratory (NRL) have suggested a method that could significantly increase the efficiency of green-blue-ultraviolet light-emitting diodes based on GaInN/GaN, AlGaN/GaN, and AlInN/GaN quantum wells. Their approach could enable advances in solid state lighting and the creation of low threshold lasers and high power light emitting diodes (LEDs). Their research is published in the January 25 and November 26, 2013 issues of Applied Physics Letters.
Read more »
Technology
|
Mar 11, 2014
Scientists Build Thinnest-Possible LEDs and Find It To Be Stronger, More Energy Efficient
Most modern electronics, from flat-screen TVs and smartphones to wearable technologies and computer monitors, use tiny light-emitting diodes, or LEDs. These LEDs are based off of semiconductors that emit light with the movement of electrons. As devices get smaller and faster, there is more demand for such semiconductors that are tinier, stronger and more energy efficient.
Read more »
Technology
|
Mar 11, 2014
Two-Dimensional Material Shows Promise for Optoelectronics
A team of MIT researchers has used a novel material that’s just a few atoms thick to create devices that can harness or emit light. This proof-of-concept could lead to ultrathin, lightweight, and flexible photovoltaic cells, light emitting diodes (LEDs), and other optoelectronic devices, they say.
Read more »
White Paper | Technology
|
Mar 14, 2014
Quantum Materials Secures Los Alamos Thick-Shell Quantum Dot Technology to Increase Brightness
Quantum Materials Corporation and Los Alamos National Laboratory's today announce Quantum Materials optioning Thick-Shell 'Giant' Quantum Dot patented technology with the potential of 10 to 100-fold improvement in solid-state brightness over conventional nanocrystal quantum dots (QD). High brightness leads to efficient use of materials and increased performance in electronic displays and solid state (LED) lighting.
Read more »
Technology
|
Mar 19, 2014
New Technique Makes LEDs Brighter, More Resilient
Researchers from North Carolina State University have developed a new processing technique that makes light emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid.
Read more »
Technology
|
Mar 26, 2014
Cree Continues to Push the Boundaries of LED Performance by Breaking 300 Lumens-Per-Watt Barrier
Cree, Inc. records another significant LED milestone with the demonstration of 303 lumens per watt from a white high power LED. Reaching the landmark achievement much faster than previously believed possible, this result surpasses Cree’s previous R&D industry best of 276 lumens per watt announced just over a year ago.
Read more »
Technology
|
Mar 28, 2014
Osram To Demonstrate The World's Most Efficient LED Replacement Tube at Light+Building
An Osram research team has succeeded in constructing the most efficient LED lamp in the world. The lamp in tubular form consumes only half the power of currently common fluorescent and LED tubes, and also achieves significantly superior colour rendering.
Read more »
Technology
|
Apr 14, 2014
Developing Phosphor-Free White Light from Nanopyramid LEDs
Researchers in China have used nitride semiconductor nanopyramid structures to create light-emitting diodes (LEDs) with spectra that are similar to those provided by ‘white light’ LEDs with yellow phosphors [Kui Wu et al, J. Appl. Phys., vol115, p123101, 2014]. The researchers are at the Chinese Academy of Sciences’s institutes of Semiconductors and Mechanics, and Tsinghua University. A similar CAS/Tsinghua team previously reported such devices, using a polystyrene nanosphere mask to make holes for selective-area growth of nanopyramids.
Read more »
Technology
|
Jul 03, 2014
Significant Technical Progress - BluGlass Demonstrates Best Ever RPCVD (p-GaN) Light Output
Australian Cleantech innovator, BluGlass Limited, has announced today that it has been successful in demonstrating the best ever p-GaN light output using its propriety technology, Remote Plasma Chemical Vapour Deposition (RPCVD) on an MOCVD partial LED structure. This result is greater than a 10 fold improvement in LED efficiency over the first p-GaN demonstration data published by the company in December 2012, when the same measuring methodology is applied. This has been achieved by making significant improvements in addressing the ‘interface challenge’, a key technical hurdle that has been limiting the p-GaN performance demonstration in the past.
Read more »