Quantum dots are solid-state ”artificial atoms” that are made up of thousands of atoms (yellow spheres) embedded in a semiconductor (blue spheres). Despite this complexity, the photon emission properties of quantum dots were hitherto believed to be like traditional atoms, where a point-emitter description is sufficient. Due to their mesoscopic dimensions, however, the point-emitter description is revealed to break down by comparing photon emission from quantum dots with opposite orientations relative to a metallic mirror.

Quantum dots are solid-state ”artificial atoms” that are made up of thousands of atoms (yellow spheres) embedded in a semiconductor (blue spheres). Despite this complexity, the photon emission properties of quantum dots were hitherto believed to be like traditional atoms, where a point-emitter description is sufficient. Due to their mesoscopic dimensions, however, the point-emitter description is revealed to break down by comparing photon emission from quantum dots with opposite orientations relative to a metallic mirror.
Download View full-size image
page_peel